«ПЕРВЫЙ СРЕДИ РАВНЫХ...»
Нормативные документы
Противодействие коррупции
Поступающим
Студентам
Выпускникам
Проект 5-100
Аккредитация специалистов

Построен электронный микроскоп нового типа

Построен электронный микроскоп нового типа

Специалисты корпорации Hitachi High Technologies и Национальной лаборатории Брукхэвен (Brookhaven National Laboratory – BNL) разработали новый сканирующий микроскоп, который позволяет снимать атомы одновременно на поверхности и в объёме образца. 

"Наши знания о влиянии индивидуальных атомов на свойства нанообъектов и процессы, происходящие в устройствах преобразования энергии, очень сильно ограничиваются возможностями наблюдения за ними", — говорит один из ведущих исследователей Имэй Чжу (Yimei Zhu) в пресс-релизе BNL. Как известно, для понимания многих реакций недостаточно "видеть" только объём материала. Его поверхность, где собственно и происходит взаимодействие, важна не меньше. 

Именно этого объединения и добились разработчики новой машины, которая расположилась на территории Центра функциональных наноматериалов (Center for Functional Nanomaterials). 

Как и все сканирующие электронные микроскопы, новый инструмент освещает образец пучком электронов, сфокусированным на небольшой точке, затем детекторы ловят испущенные материалом вторичные электроны. Полученные данные позволяют определить структуру поверхности и топографию образца. 

Но теперь исследователи разместили детекторы как перед образцом, так и за ним. Второй набор регистрирует электроны, прошедшие через толщу изучаемого материала, благодаря чему появляется возможность построить внутреннюю структуру (получается как бы помесь сканирующего и просвечивающего электронных микроскопов). 

Учёные применили в новинке ряд усовершенствований. В частности, оригинальную систему коррекции сферической аберрации. Дополнения привели к увеличению разрешающей способности исходного прибора в четыре раза (до одной десятой нанометра), то есть теперь у машины появилась возможность делать изображения, на которых можно различить отдельные атомы. 

"Эффект похож на тот, что получается при использовании большей линзы в фотоаппарате: данных собирается больше и они при этом фокусируются на меньшей площади", — поясняет биофизик Джозеф Уолл (Joseph Wall), один из авторов разработки, описывающих её в статье в журнале Nature Materials. 

Для демонстрации возможностей нового прибора учёные провели съёмку отдельных атомов урана (обведены кружками) на поверхности тонкой подложки из углерода. Вверху: изображение, полученное в прошедших через образец электронах. Внизу: изображение поверхности образца. По центру: объединённая картина (объём – красным, поверхность – зелёным). Атомы, которые не видны на нижнем снимке, находятся на нижней стороне углеродной подложки (фото Department of Energy Brookhaven National Laboratory).

Для демонстрации возможностей нового прибора учёные провели съёмку отдельных атомов урана (обведены кружками) на поверхности тонкой подложки из углерода. Вверху: изображение, полученное в прошедших через образец электронах. Внизу: изображение поверхности образца. По центру: объединённая картина (объём – красным, поверхность – зелёным). Атомы, которые не видны на нижнем снимке, находятся на нижней стороне углеродной подложки (фото Department of Energy Brookhaven National Laboratory).

"Информация, полученная с помощью нового устройства, позволит больше узнать о расположении атомов и активных центров, разглядеть небольшие вариации состава и положение дефектов кристаллической структуры образца. Все эти показатели значительно влияют на свойства материалов и их реакции друг с другом", — добавляет Чжу. 

Действительно, такая двойная съёмка помогает учёным лучше понять полную картину происходящего, например, как взаимодействуют атомы поверхности и объёма во время каталитической реакции. 

Для нормальной работы столь чувствительного прибора, конечно же, понадобились особые условия. Чтобы изолировать новый микроскоп от вибраций, перепадов температуры и даже слабых электромагнитных полей, его поместили в особую комнату.

 В ней все 24 часа температура регулируется вплоть до сотых долей градуса Цельсия, амортизирующие пластины защищают прибор от проезжающих вдали грузовиков и хлопающих дверей, обычная система вентиляции заменена на охлаждающие воздух панели. "Всё здание является своего рода технологическим шедевром. Микроскоп просто не смог бы работать в других условиях", — поясняет Чжу. 

Заметим, разрешение в 0,1 нанометра является одним из лучших показателей для электронных микроскопов, но вдвое уступает достижению аппарата Titan.

Источник: PhysOrg.com


24.09.2009

MEMBRANA


Привязка к разделам:  Биотехнологии | Новости | Новости науки

Назад